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Abstract

We address the problem of navigating a set of moving agents, e.g. auto-
mated guided vehicles, through a transportation network so as to bring
each agent to its destination at a specified time. Each pair of agents is re-
quired to be separated by a minimal distance, generally agent-dependent,
at all times. The speed range, initial position, required destination, and
required time of arrival at destination for each agent are assumed pro-
vided. The movement of each agent is governed by a controlled differ-
ential equation (state equation). The problem consists in choosing for
each agent a path and a control strategy so as to meet the constraints
and reach the destination at the required time. This problem arises in
various fields of transportation, including Air Traffic Management and
train coordination, and in robotics. The main contribution of the paper
is a model that allows to recast this problem as a decoupled collection of
problems in classical optimal control and is easily generalized to the case
when inertia cannot be neglected. Some qualitative insight into solution
behavior is obtained using the Pontryagin Maximum Principle. Sam-
ple numerical solutions are computed using a numerical optimal control
solver.

1 Introduction

Problems in coordinated motion planning for multiple agents can be
roughly classified into two disjoint categories, decoupled coordination
(each agent’s motion is planned separately, then the plans are reconciled),
and centralized coordination (all the agents’ motions are planned simul-
taneously, with the interaction constraints considered from the start) [1].
The problems considered in this paper fall in the latter category. Cen-
tralized coordination of multiple agent motion has been approached us-
ing various types of mathematical models, discrete (see, for example, [2]
and references therein) and continuous (see, for example, [1, 3–5], and
references therein). A review of research on multi-robot coordination
problems can be found in [1, section 1.1].

In a number of coordination problems, the moving agents are confined
to a transportation network (also known as roadmap coordination space
[1]). A general mathematical model of a transportation network is a
multigraph [6] with the vertices being points in a Euclidean space and
edges being parametrized curves connecting pairs of vertices. Examples
of such networks include railroad networks for trains, railroad networks
for industrial robots, trolley and tram car networks, and airspaces with
fixed nominal routes.

A subclass of network-confined coordination problems consists of
those where the agents’ paths are not given but sought as part of solv-
ing the problem. In such problems, the system exhibits behaviors both
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continuous (the agent’s motion along an edge) and discrete (an agent’s
choice between two edges emanating from the same vertex). This cou-
pling of the two behaviors suggests hybrid control systems (HCS) [7] as
a suitable class of models for approaching the problem. Hybrid systems
have been applied to various problems of transportation (e.g., highway
traffic [8,9]), and in particular to aerospace problems [10–12], and are ap-
plied here to the problem of finding routes and speed advisories for a set
of agents moving in a transportation network with separation constraints
and an arrival schedule imposed. Namely, one is given the following data:

1. A directed multigraph G = (V,E), each vertex v ∈ V being a
point in a Euclidean space E of dimension 2 or 3. If e ∈ E is an
edge from vertex v1 to vertex v2, then the nominal route segment
from waypoint v1 to waypoint v2 is a curve in E, connecting v1 to
v2. All such curves will henceforth be assumed rectifiable [13] and
capable of a parameterization which is continuous and piecewise
continuously differentiable. A cusp in the curve can be traversed
with the assumption (made throughout this paper, but capable of
relaxation) that inertia is neglected, and approximately smoothed
if inertia is to be taken into account. A graph-theoretic path [6]
in G is, therefore, associated (and, henceforth, identified) with a
spatial path that can be traversed by a moving agent. A vertex of
G of indegree ≥ 2 [6] (respectively, outdegree ≥ 2) corresponds to
two or more route segments merging (respectively, diverging). The
modeling framework below imposes no restrictions on the outdegree
or indegree of a vertex.

2. A finite set

A = {1, . . . , A} (1)

of moving agents α ∈ A in G. If agent α is moving along a path
in G, the agent’s position is specified by the arc length coordinate
xα along the path.

3. For each agent α ∈ A, a specification of the agent’s initial posi-
tion xINIT ;α, required destination xDEST ;α, and the required time
tDEST ;α of arriving at the destination. Here xINIT ;α and xDEST ;α

are points in G, each point specified, for example, by an edge in G

and a fractional distance along that edge.

4. The inertia-free state equations [14] (henceforth the dot denotes
differentiation with respect to physical time t)

ẋα = sα, α ∈ A,

where the sα’s are the corresponding speeds, describing the motion
of those agents α that have not yet reached their destination. In
what follows, and with the details provided below, the coordinates
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xα will play the role of state variables; the speeds sα, of the control
variables.

5. State constraints: the separation requirement for each pair of agents.
This requirement is described mathematically, in terms of the co-
ordinates xα, in section 3.

6. Control constraints: bounds on the speeds sαe .

7. A cost functional, specified below.

The problem, defined in detail below (definition 4.1) as the Scheduled
Routing Problem, consists in finding for each agent α ∈ A a path p(α) in
G from xINIT ;α to xDEST ;α and a control strategy sαp(α)(t) (i.e., a function

from the time domain of the model to the set of admissible controls)
such that the resulting movements xα(t) along the corresponding paths
constitute a state trajectory that satisfies the above state and control
constraints and that minimizes the cost.

In this paper, we use an HCS framework to formulate a model spe-
cialized to the above problem. The main contributions of this model are
as follows:

• Reduction of the problem to a special case of an HCS where each
solution trajectory lies in only one control mode.

• A clear application of Depth-First Search [15] to search through
the control modes as economically as possible given the possibly
exponential size of the problem. (In the worst case when every
agent can be assigned to any of the paths, and when each edge can
serve as a path by itself, the number of agent-to-path assignments,
i.e. of functions µ : A → E, is |E||A|. This upper bound, however,
is a crude overestimate. Better ones are discussed below.)

• Reduction of each control mode to a problem in classical determin-
istic optimal control, which allows, at least in principle, application
of the fundamental results of Pontryagin [16] and Bellman [17], and
of the numerical algorithms that have been developed and imple-
mented [18–20].

• A natural way to capture an agent’s exiting the system; see Remark
4.1, below.

These contributions together allow for parallel computation of solutions:
the classical optimal control problems corresponding to different control
modes can be solved in parallel, and their obtained minimal costs values
compared. Furthermore, the Depth-First Search algorithm itself admits
a parallel implementation [21].

The new hybrid model is formulated in section 2. The classical de-
terministic optimal control corresponding to a given control mode is
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formulated in section 4. Numerical solutions to some instances of the
problem are given in section 5.

2 An HCS formulation

The HCS defined in this section will be instrumental in a precise formu-
lation of the Scheduled Routing Problem. Assume the data 1)-7), listed
in the third paragraph of section 1.

• For each agent α ∈ A, let eINIT ;α denote the edge occupied initially
by agent α. (Two or more agents can occupy the same edge.)

• Let P
(

eINIT ;α, eDEST ;α
)

be the set of all paths in the multigraph

that begin with the edge eINIT ;α and end with the edge eDEST ;α

that contains xDEST ;α. The length of a path p ∈ P
(

eINIT ;α, eDEST ;α
)

will be denoted l(p).

• Define a control mode µ as a mapping that assigns each agent α to a

path in P
(

eINIT ;α, eDEST ;α
)

. In more detail, µ is a mapping from

the set A of moving agents to the union ∪αP
(

eINIT ;α, eDEST ;α
)

such that

µ(α) ∈ P
(

eINIT ;α, eDEST ;α
)

for each α ∈ A

• For agent α, each path µ(α) ∈ P
(

eINIT ;α, eDEST ;α
)

is parameter-

ized by arc length. For computational convenience, the arc length
coordinate increases along the path, with the destination coordi-
nate xDEST ;α being zero for each α. Thus, xαµ ∈ [−l(µ(α)), 0],
and

xDEST ;α = 0

This convention ensures that an agent’s destination is a vertex in
the transportation network and, furthermore, that it is the same
vertex in all control modes.

• Each agent α in each control mode µ is required to reach its des-
tination xαµ = xDEST ;α = 0 at a prescribed time tDEST ;α. Upon
reaching destination, the agent is no longer in the model; this is
reflected in the restriction on the time domains of the individual
equations in the dynamical law (2), stated below.

• In each µ, have the arc length coordinate xαµ evolve according to
the dynamical law

ẏαµ(t) = sαµ(t) for 0 ≤ t ≤ tDEST ;α, α ∈ A, (2)
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where sαµ is the control variable corresponding to the agent’s speed
of motion along the path. In this formulation, the equations that
constitute the dynamical law are imposed over different (albeit
overlapping) time domains. The problem, however, will be con-
verted below to one where all dynamical law equations are imposed
over the same (rescaled) time domain.

• For each µ and each α, impose the arrival requirement

xαµ

(

tDEST ;α
)

= xDEST ;α (3)

• For each µ and each α, impose the speed ranges

sMIN ;α
µ ≤ sαµ ≤ sMAX;α

µ (4)

3 The geometry of separation constraints

In some transportation types, including aircraft and trains, every pair of
moving agents must be be separated by a distance no smaller than a pre-
determined minimal separation. For example, the minimal separation
requirements for air traffic in the U.S. are defined in [22] and depend on
numerous factors, including airspace type, air traffic automation systems
in use, and aircraft weight classes (the classes defined in [22] are: Small,
Large, Heavy, B757). Other types of moving agents, e.g. industrial
robots, may also be subject to complicated, asymmetric, and anisotropic
(e.g., for aircraft, altitude-dependent) separation requirements. The sep-
aration requirement will be a key constraint on the state variables in the
Scheduled Routing Problem formulated in section 4.2.
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Figure 1. Agents 1, 2 on their respective rectilinear edges e1, e2, which
share a common vertex, taken as the origin 0 in R2. The orientation
of the edges is not specified. (a) The unit vectors a1,a2 are collinear
with the respective edges, but their directions do not necessary agree
with the edges’ orientations. (b) With suitably chosen scalar coefficients
c1, c2, the vectors c1a1 and c2a2 are the respective position vectors of the
two agents.
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No attempt is made in this paper to capture all such requirements in
detail (see, however, section 6.3) for a discussion of anisotropy in sepa-
ration requirements arising from altitude dependence). Instead, we will
use conservative approximations, addressing only the following asym-
metry: if two moving agents are in-trail (i.e., one is directly following
the other along a route segment which is not necessarily in a horizontal
plane), then the minimal separation can depend on the weight class of
the leading and trailing agent. To capture this potential asymmetry,
for each pair α1, α2 of agents with the first one leading, we introduce
the minimal separation rα1,α2

. If the asymmetry takes place, it can be
written

rα1,α2
6= rα2,α1

(5)

We now calculate the set of all states, in a control mode µ of a hybrid
system described above, where at least two agents violate the separation
requirement. The scenario shown in Figure 1A has two agents on two
different rectilinear edges, which need not lie in a horizontal plane, with a
common vertex and no specified orientation. (If the edges are curvilinear
with low curvature near a common vertex or intersection, these portions
can be approximated by linear segments; otherwise, the analysis becomes
considerably more complicated.)

Remark 3.1. Since edge orientation is not specified, Figure 1 describes
four cases: one where both agents are moving toward the common vertex,
one where both agents are moving away from the common vertex, and
two more cases in which one agent is moving toward, and the other away
from, the common vertex.

c
2
 

c
1
 

Figure 2. An example of two elliptical sectors in the c1c2-plane corre-
sponding to conflicting states.

The asymmetry of the gray-shaded region about the dashed diagonal
is the asymmetry (5).

We will use the Euclidean inner product 〈·, ·〉 and the corresponding
norm || · || in the 2-D space containing the two edges. Pick the common
vertex as the origin and the unit vectors a1,a2 as the basis vectors that,
regardless of the edge orientations, point from the origin toward the
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respective agents. With suitable scalars c1, c2, the vectors c1a1 and c2a2
are the agents’ respective position vectors. The squared distance between
the two agents is

||c1a1 − c2a2||
2 = (c1)

2 + (c2)
2 − 2c1c2〈a1,a2〉 (6)

Equating the latter expression to the squared minimal separation, say,
r21,2, we obtain the equation

(c1)
2 + (c2)

2 − 2c1c2〈a1,a2〉 = r21,2 (7)

of an ellipse in the c1c2-plane. The corresponding set of conflicting sets
is described by the elliptical sector obtained by intersecting the ellipse-
bound region

(c1)
2 + (c2)

2 − 2c1c2〈a1,a2〉 < r21,2

with the open octant c2 > c1 > 0, corresponding to the case when agent
1 is the one closer to the origin. In the other case (agent 2 is closer to
the origin), the corresponding elliptical sector is obtained by intersecting

(c1)
2 + (c2)

2 − 2c1c2〈a1,a2〉 < r22,1

with the octant c1 > c2 > 0. The role of the angle θ between the edges
e1, e2 in both sectors is the equality 〈a1,a2〉 = cos(θ). An example of
two such sectors is shown in Figure 2.

c
2
 

c
1
 

Figure 3. An example of two stripes in the c1c2-plane corresponding to
conflicting states of two agents on the same edge.

In each of the four cases listed in Remark 3.1, the respective continu-
ous state coordinates x1µ, x

2
µ of agents 1, 2 in control mode µ map to the

coefficients c1, c2, as follows:

1. If both agents are moving toward the common vertex, then xαµ =
l(eα)− cα for α = 1, 2.

2. If both agents are moving away from the common vertex, then
xαµ = cα for α = 1, 2.
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3. If agent 1 is approaching, and agent 2 going away from, the common
vertex, then x1µ = l(e1)− c1, x

2
µ = c2.

4. If agent 2 is approaching, and agent 1 going away from, the common
vertex, then x1µ = c1, x

2
µ = l(e2)− c2.

If θ ≥ 90◦, then in the last two cases µ allows only one in-trail sequence,
so the minimal separations used for the two sectors in Figure 2 are equal.
If the two agents 1, 2 are on one and the same edge, then the set in the
c1c2-plane of the conflicting states appears as in Figure 3 (the asymmetry
about the dashed diagonal corresponds to (5). The mapping from the
continuous state coordinates x1µ, x

2
µ to the coefficients c1, c2 is constructed

analogously to the above four cases.

1


2


2


1


(a) (b) (c)

Figure 4. An example of two agents whose paths in the transportation
network are prescribed and overlap. The black star shows the beginning
of the overlap in (a) and the corresponding state (both agents being
at that point) in (b); the white star, the end of the overlap in (a) and
the corresponding state (both agents being at that point) in (b). The
system, shown in (a), has seven control modes with both agents in the
transportation network. Each mode’s set of separation-violating states,
shown in (b) as a connected [23] gray region, is “glued” to some of the
others. The result of the gluing is the connected region shown in (c).

The above calculation is illustrated, for an example of two moving
agents, in Figure 4. In each control mode, the set of conflicting states is
shown as a connected [23] gray region. For dimension A above 2, one must
compute for each pair of agents the set of states violating the separation
requirements. Each such set is a cylinder, or union of cylinders, with the
base shaped as shown in Figure 4c, in the total state space ∪µXµ. We
note that the set of all separation-violating states in ∪µXµ is cylindrical
in the sense of [5, Definition 2.2], the latter definition a key requirement
for the applicability of a number of theoretical results of [5].
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4 The Scheduled Routing Problem and the equiv-

alent Stacked Scheduled Routing Problem

For ease of exposition, we precede the general formulation of the problem,
suitable for an arbitrary number of moving agents, with a specific, two-
agent, example.

4.1 An instance of the scheduled routing problem for two
agents
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Figure 5. An initial state (a) and required destinations (b) of a two-agent
set.

The initial state of a two-agent scheduled routing is shown in Figure 5a;
the required destinations (with possibly different required arrival times)
for the two agents, in Figure 5b. In this Figure,

α = 1 : eINIT ;1 = e1, e
DEST ;1 = e8,

α = 2 : eINIT ;2 = e2, e
DEST ;2 = e7

The paths are

p1 : e1, e3, e6, e8; p2 : e1, e4, e8; p3 : e2, e3, e6, e7; p4 : e2, e4, e7 (8)

Agent 1 can take either p1 or p2; agent 2, either p3 or p4. Consequently,

P
(

eINIT ;1, eDEST ;1
)

= {p1, p2}, P
(

eINIT ;2, eDEST ;2
)

= {p3, p4}

No other paths can be taken.
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Figure 6. The four paths (8), in that order, for the problem in Figure 5.

The paths p1, . . . , p4 are shown, in that order, in Figure 6. We obtain
the control modes µ1, . . . , µ4, defined as follows:

α µ1(α) µ2(α) µ3(α) µ4(α)

1 p1 p1 p2 p2
2 p3 p4 p3 p4

The state space corresponding to each control mode µ is a rectangle

consisting of those state vectors
(

x1µ, x
2
µ

)

that are compliant with the

arc length bounds and separation constraints.

The above system is subject to the operational requirement (3), here
for α ∈ A = {1, 2}, that agents 1 and 2 arrive at their destinations at
times tDEST ;1, tDEST ;2, respectively.
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Figure 7. Topology of approximated conflict zone in the state spaces (a)
Xµ1

,Xµ4
and (b) Xµ2

,Xµ3
. The black dot (near top right) denotes the

required destination coordinate pair
(

xDEST ;1
µ , xDEST ;2

µ

)

.

In each of µ1, µ4, the pairwise conflict zone is simply connected [23]
(i.e., consists of only one connected component and has no “holes”).
Consequently, once each of the conflict zones, of the form shown in Figure
4c, is approximated by an ellipse-bounded region, the state spaces for
µ1, µ4 have the topology shown in Figure 7a. In each of µ2, µ3, the two
agents’ paths have two crossings (regarded here as short overlaps), hence
the pairwise conflict zone has two connected components (Figure 7b).

Each control mode µ is subject to the initial condition

xαµ(0) = xINIT ;α for α ∈ A (9)

The simplifying assumption underlying (9) is that both agents start their
journey simultaneously. This assumption can be relaxed and is used here
for mathematical simplicity only.

Finally, for each control mode µ, we can specify a cost functional
that suits the goals implied by the context of the specific application.
One example is a cost functional that requires the agents (e.g., trains)
to move as slowly as possible, for safety, is

∑

α∈A

∫ tDEST ;α

0

(

sαµ

)2
dt (10)

Thus, for each control mode µ, we have an optimal control problem
with dynamical law (2), subject to the initial condition (9), the control
constraints that specify permissible value ranges for the speeds sαµ, and
the following additional constraints:

• The arrival requirement (3).

• The separation requirement, defined by constructing a function
gSEP ;α1,α2
µ ((xαµ)α∈A) of the state such that the pairwise conflict
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zone (shown as a gray-shaded region in the appropriate panel of
Figure 7) is exactly the set of states satisfying the functions

gSEP ;α1,α2
µ ≥ r2α1,α2

, (11)

where each gSEP ;α1,α2 (xα1 , xα2) is a quadratic function of the form
given by the left-hand side of (7).

For the pair (α1 = 1, α2 = 2) (and, in the general scheduled routing
problem, for every pair (α1, α2)) of agents, inequality (11) defines a union
(denoted Xα1,α2

µ ) of regions in the state space of µ, each region bounded
by an ellipse-cylindrical (“tube-shaped”) hypersurface. The separation
requirement thus translates into the requirement that a solution (the
state trajectory) is disjoint from the interior of every such region for
every pair of agents.

4.2 The Scheduled Routing Problem: a general formula-
tion

The central problem of this paper, which will be called the Scheduled
Routing Problem, can now be stated as follows.

Definition 4.1. (Scheduled Routing Problem) Given a set A of agents
moving on a route network G = (V,E) subject, in each control mode µ,
to the dynamical law (2), the initial condition (9), and the control con-
straints (4), find a control strategy (sµα(τ))α such that the corresponding
state trajectory xµ(t) = (xαµ(t))α∈A that satisfies (3) and minimizes the
total cost.

This is an optimal control problem with a Lagrange cost function.
The problem, however, has two non-standard features that hamper ap-
plication of classical optimal control theory and numerical computation
of solutions. One feature is the presence of intermediate constraints.
The other is the following non-autonomous behavior: an agent, once at
destination, no longer “participates” in the constraints or in the cost.
We now use a formalism similar to that in [24] to reduce this problem
to a classical, optimal control problem, which is autonomous if its cost
functional is. In the rest of this section, the subscript µ is dropped for
brevity.

4.3 The Stacked Scheduled Routing Problem (SSRP), equiv-
alent to the Scheduled Routing Problem

Let (αq)
A
q=1 be an ordering of the agents by their arrival times (arranged

in nondecreasing order). Let t0 = 0, and for each q > 0 let

tq = tDEST ;αq

Define a new (normalized) time τ ∈ [0, 1] and, for each of the intervals
[tq, tq+1], q = 0, . . . , A− 1, introduce the following:
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• the state variable ρq(τ), which will play the role of “physical time”
in the interval [tq, tq+1]:

tq ≤ ρq(τ) ≤ tq+1;

• the state variables yαq (τ), α ∈ A, related to the above xα(t) by

yαq (τ) = xα(t) if ρq(τ) = t; (12)

• the vector notation yq(τ) = (yαq (τ))α∈A;

• the control variables sαq (τ), related to the above sα(t) by

sαq (τ) = sα(t) if ρq(τ) = t, (13)

• the control variables zq > 0, which represent the rate of flow of
physical time with respect to the normalized time τ .

The above definition of the Lagrange cost reflects the assumption that
an agent, once at destination, “disappears” from the system, in the sense
of being no longer subject to the separation requirement with the other
agents. From (2), (12), and (13), one readily obtains the dynamical law
equations

d
dτ y

αq′

q = zqs
αq′

q for q′ ≥ q + 1

d
dτ

ρq = zq















α ∈ A (14)

Finally, the initial conditions and arrival requirement, together with the
requirement that physical time and state change continuously when pass-
ing from one interval [tq, tq+1] to the next, translate to the endpoint
constraints

yα0 (0) = xINIT ;α (see (9)) (a)

ρq(1) = ρq+1(0) (b)

ρq+1(0) = tq+1 (c)

y
αq′

q (1) = y
αq′

q+1(0) for q
′ ≥ q + 1 (d)

y
αq+1

q+1 (1) = xDEST ;αq+1 (e)































































0 ≤ q < A (15)

Conditions (15.bc) ensure the continuity of physical time flow; conditions
(15.d), the continuity of an agent’s motion.
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Remark 4.1. The state equations (14) and the endpoint constraints
(15.d) come with the restriction q′ ≥ q + 1 because they are imposed,
in agreement with (2), only for those agents who have not yet reached
their destination: by the end of the q-th time period, the first q agents
have reached destination. Thus, upon reaching destination, an agent is
excluded from the model, and is no longer represented by a state equation
or subject to separation constraints with the other agents. This eliminates
the necessity to continue modeling an agent whose role in the model has
already been fulfilled.

Throughout the rest of this paper, the choice (10) of the cost func-
tional is assumed in all the numerical examples. Other choices of the cost
functional are discussed in section 6. Since the time intervals between
each consecutive pair of arrivals are modeled, in this latter formulation,
as if they were occurring simultaneously (“stacked” upon one another),
the following definition will be adopted.

Definition 4.2. (a) The newly obtained optimal control problem corre-
sponding to a control mode µ and consisting of the state equations (14),
endpoint constraints (15), cost functional (10), the separation constraints
on the variables y

αq′

q , the control constraints corresponding to (4) speci-
fying the speed ranges on the variables s

αq′

q , and the positivity constraints

zq > 0,

will be called a µ-stacked optimal control problem.

(b) The set of all µ-stacked optimal control problems will be called a
Stacked Scheduled Routing Problem (SSRP).

(c) Of all the optimal solutions to all the µ-stacked optimal control
problems, a solution achieving a lowest cost is called an optimal solution
to the SSRP.

Thus, an SSRP consists of a collection of optimal control problems,
and an optimal solution to the SSRP tells not only how quickly the
agents are to move, but also how they should be routed. The SSRP is
equivalent to the Scheduled Routing Problem (definition 4.1).

4.4 Implications of the Pontryagin Maximum Principle
for the SSRP

The assumption that we are in a specific control mode µ is still in force.
Denote by ξyq , ξρq the costates for yq, ρq. In those states where none of
the state constraints is active, the Hamiltonian for each control mode of
the SSRP is

H = −f0 +
∑

q;q′≥q+1

zqs
αq′

q ξyq +
∑

q

zqξρq ,
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where f0 is the performance index (running cost) corresponding to the
cost functional (10). Since H does not explicitly depend on any of the
state variables, it follows that the costate variables are constant along
the trajectory portions clear of state constraints and, consequently, the
maximization ofH in each such state is a problem of static maximization.
This fact, in turn, implies the existence of an optimal state trajectory
in which these portions are rectilinear on each [tq, tq+1]. If, furthermore,
there is only one optimal trajectory, then its portions away from the
obstacle boundary are necessarily rectilinear.

With the state equations (2) and the set (4) of control constraints, the
set of all states reachable from a given state y0

µ = (y0;αµ )α∈A is the pointed
polyhedral cone that consists of all states yµ = (yαµ)α∈A satisfying

0 ≤
(

yα1
µ − y0;α1

µ

)

s
MIN;α1
µ

s
MAX;α2
µ

≤ yα2
µ − y0;α2

µ

≤
(

yα1
µ − y0;α1

µ

)

s
MAX;α1
µ

s
MIN;α2
µ























α1 6= α2

This cone has vertex y0
µ and is the intersection of the half-spaces

yα2
µ − y0;α2

µ ≤
sMAX;α1
µ

s
MIN ;α2
µ

(

yα1
µ − y0;α1

µ

)

, α1 6= α2,

yα2
µ − y0;α2

µ ≥
sMIN ;α1
µ

s
MAX;α2
µ

(

yα1
µ − y0;α1

µ

)

, α1 6= α2,

and
yαµ ≥ y0;αµ , α ∈ A

The narrower the speed ranges (4), the narrower the cone, and the
smaller the portions of an optimal trajectory that lie on the boundary
of the obstacle

∪α1 6=α2
Xα1,α2

µ

This suggests that, for narrow speed ranges, optimal trajectories for
the Stacked Scheduled Routing Problem can be well approximated by
piecewise linear curves.

4.5 An approach to computing solutions and an analysis
of the associated costs

The number of the control modes µ is the product
∏

α∈A

∣

∣

∣P
(

eINIT ;α, eDEST ;α
)
∣

∣

∣

Paths which are, or contain, cycles are allowed in the model and can be
desirable in some applications; e.g., in air traffic models where aircraft
may be sent into a holding pattern to absorb delay. Furthermore, the
following holds true:
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Remark 4.2. Every solution to the control problem described above will
correspond to exactly one of the control modes µ. This property of the
problem removes two difficulties associated inherently with hybrid systems
and absent from classical control systems, the risk of excessively frequent
switchings of control mode, and the necessity for “control mode memory,”
i.e. for keeping track of the control modes entered prior to the current
time in the system’s evolution.

Each set P
(

eINIT ;α, eDEST ;α
)

can be computed using the Depth-

First Search algorithm, whose computational cost in a non-parallel im-
plementation is known [15, section 23.3] to be O(|V |+ |E|).

These considerations suggest the following procedure for finding an
optimal solution to an SSRP. Upper bounds on the computational cost
are provided, in square brackets ([]), where possible.

• Compute all the sets P
(

eINIT ;α, eDEST ;α
)

. [In a non-parallel im-

plementation, this computation amounts to a Depth-First Search
for each agent α ∈ A, hence the computational cost is O(|A|(|V |+
|E|)).]

• For each µ, compute an optimal solution to the corresponding
Stacked Scheduled Routing Problem, and the cost Cµ of that solu-
tion. [The computational cost depends on the particular choice of
the computational method; see, for example, [18,25]. The numeri-
cal results in this paper were produced using Sequential Quadratic
Programming (SQP) [18], chosen for the convenience of available
software.]

• Select a control mode µ∗ such that Cµ∗ ≤ Cµ for all µ, and declare
the corresponding optimal solution the optimal solution for the
SSRP (definition 4.2). [O(the number of control modes).]

5 Sample numerical computations for the Stacked

Scheduled Routing Problem

5.1 Assumptions and notational conventions

All the transportation networks appearing in the numerical examples
of this section are graphs; namely, no two vertices are connected by
more than one edge. This allows to specify each path as a sequence of
vertices, rather than of edges. To simplify the computations, the sepa-
ration requirements for each pair of agents are assumed symmetric. The
numerical code admits a straightforward, albeit somewhat cumbersome
algebraically, generalization that will dispense with this assumption.

In panels (a, b) of Figures 9, 11, 12-17, the computed trajectories and
controls are plotted using the symbols described in Table 1. In panels
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Quantities Plot symbol

y1q , s
1
q —

y2q , s
2
q +

y3q , s
3
q – –















































for q = 1, . . . , A

Table 1. The legend used in Figures 9, 11, 12-16, below.

(c) (and, when present, (d)) of these Figures, as well as in Figures 8 and
10, the transportation networks are depicted as directed graphs; moving
agents, as points labeled with values of α, each point serving as a center
of a circle with radius equal to half the required pairwise separation. In
all plots, axis label ρ refers, in agreement with the above, to physical
time. All plots were generated using the MATLAB software [26].

The first two of the examples in section 5.4 are “abstract,” in the
sense that no particular application is specified for them. Thus, the units
of length and physical time are left unspecified. Application and units
are, however, specified for the third example. The required destination
yDEST ;α is in each case the end of the path assigned to agent α in control
mode µ:

yDEST ;α = 0

5.2 The cost function

The cost function used in the following examples is (10), which, on con-
verting the scheduled routing problem to a Stacked Scheduled Routing
Problem (definition 4.2), takes the form

A
∑

q=0

∑

q′≥q+1

∫ 1

0

(

s
αq′

q

)2
ρqdτ

5.3 Computational methods

In each control mode, the corresponding optimal control problem was
solved using the OCP solver [20], which uses Sequential Quadratic Pro-
gramming (SQP) [18].
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5.4 Numerical examples

5.4.1 Three moving agents, one control mode

−2 −1 0 1 2
−2

−1

0

1

2

 v
1

 v
2

 v
3

 v
4  v

5

α = 1 α = 2

α = 3

Figure 8. The transportation network and the agents’ initial locations
in the example of section 5.4.1.

The transportation network for this example is the 2-dimensional di-
rected graph shown, together with the three agents’ initial locations, in
Figure 8. Each agent can traverse only the edge on which it is positioned
initially, hence only one control mode µ arises.

The speed ranges are given by

α 1 2 3

sMIN ;α
µ 0.3 0.3 0.4

sMAX;α
µ 1.5 0.8 0.9

The required times of arrival at destination are

α 1 2 3

tDEST ;α 2.0 3.0 4.0

The minimal required separation is 0.3.

The numerical solution computed for the control mode µ is shown in
Figure 9.
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Figure 9. Numerical solutions (for the only possible control mode) in the example of section 5.4.1. (a) State trajectory vs. time.
(b) Control strategy vs. time. (c) The positions of the agents in the transportation network at ρq(1) for q = 1. (d) The positions
of the agents in the transportation network at ρq(1) for q = 2.
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5.4.2 Two moving agents, four control modes, wide speed

ranges
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Initial state

Figure 10. The transportation network and the agents’ initial locations
in the example of section 5.4.2.

The transportation network for this example is the 2-dimensional di-
rected graph shown, together with the two agents’ initial locations, in
Figure 10.

The two paths considered here are

p1 : v1, v2, v8, v9, v10, v6; p2 : v1, v2, v3, v4, v5, v6

The speed ranges are given by

α 1 2

sMIN ;α
µ 0.6 0.6

sMAX;α
µ 1.4 1.4

The required times of arrival at destination are

α 1 2

tDEST ;α 28.3 36.1

The minimal required separation is 1.0.
The control modes are as follows.

α µ1(α) µ2(α) µ3(α) µ4(α)

1 p1 p2 p2 p1
2 p2 p1 p2 p1
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Figure 11. Numerical solutions for control mode µ1 in the example of section 5.4.2. (a) State trajectory vs. time. (b) Control
strategy vs. time. (c) The positions of the agents in the transportation network at ρq(1) for q = 1.
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Figure 12. Numerical solutions for control mode µ2 in the example of section 5.4.2. (a) State trajectory vs. time. (b) Control
strategy vs. time. (c) The positions of the agents in the transportation network at ρq(1) for q = 1.
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Figure 13. Numerical solutions for control mode µ3 in the example of section 5.4.2. (a) State trajectory vs. time. (b) Control
strategy vs. time. (c) The positions of the agents in the transportation network at ρq(1) for q = 1.

23



0 5 10 15 20 25 30 35 40
−25

−20

−15

−10

−5

0

5

ρ

th
e 

ag
en

ts
’ a

rc
 le

ng
th

 c
oo

rd
in

at
es

0 5 10 15 20 25 30 35 40
0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

th
e 

ag
en

ts
’ s

pe
ed

s

ρ
2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

3

4

5

6

7

8

 v
3  v

4

 v
5 v

6 v
7

 v
8

 v
9

 v
10

α = 1

α = 2

End of time interval #1: ρ = 28.3

(a) (b) (c)

Figure 14. Numerical solutions for control mode µ4 in the example of section 5.4.2. (a) State trajectory vs. time. (b) Control
strategy vs. time. (c) The positions of the agents in the transportation network at ρq(1) for q = 1.
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The respective numerical solutions for these modes are shown in Fig-
ures 11-14.

The total costs for each control mode are as follows:

control mode µ1 µ2 µ3 µ4

total cost 37.5823 38.8925 45.4652 31.5979

Therefore, the optimal routing and control strategy are achieved in con-
trol mode µ4.

5.4.3 Two moving agents, four control modes, narrow speed

ranges

In this example, the transportation network, 3-dimensional, models a
terminal airspace, which consists of two arrival paths merging into the
same final approach segment. The transportation network and the initial
positions of the two aircraft are shown in Figure 15.

Here the edge (v6, v7) is the final approach to a runway, and the
moving agents are aircraft. For realism, one unit of arc length is taken
here to be 3 nautical miles, and the unit of speed is taken to be 200
knots, a typical speed allowed in U.S. terminal airspaces at altitudes
below 10, 000 feet.

The two paths considered here are

p1 : v1, v2, v8, v9, v10, v6; p2 : v1, v2, v3, v4, v5, v6

The control modes are as follows.

α µ1(α) µ2(α) µ3(α) µ4(α)

1 p1 p2 p2 p1
2 p2 p1 p2 p1

The speed ranges are given by

α 1 2

sMIN ;α
µ 0.8 (= 160 kts) 0.8

sMAX;α
µ 1.2 (= 240 kts) 1.2

The required times of arrival at destination are

α 1 2

tDEST ;α 21.2 (= 0.03 hrs) 28.1 (= 0.04 hrs)

The minimal required separation is 1.0 (= 3 nmi).
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Figure 15. The 3-dimensional route network and the moving agents’ initial positions (centers of the circles in horizontal planes),
for the numerical example of section 5.4.3. Here the route network is a terminal airspace, and the agents are arriving aircraft. The
radius of each circle is half the minimal required pairwise separation of 3 nmi.
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Figure 16. Numerical solutions for control mode µ1 in the example of
section 5.4.3. (a) State trajectory vs. time. (b) Control strategy vs.
time. (c) The positions of the agents in the transportation network at
ρq(1) for q = 1.
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Figure 17. Numerical solutions for control mode µ4 in the example of
section 5.4.3. (a) State trajectory vs. time. (b) Control strategy vs.
time. (c) The positions of the agents in the transportation network at
ρq(1) for q = 1.

28



In control modes µ2, µ3, the control problem has no solution, since
the path lengths are such that the imposed speed ranges prevent at least
one agent from reaching its destination at time. The numerical solution
for control mode µ1 is shown in Figure 16 and incurs a total cost of
49.2396. In µ4, the computed optimal control strategies prescribe the
constant speeds

s1µ4
= 1.03, s2µ4

= 0.82

and the solution (Figure 17) incurs a total cost of 41.5594. Therefore,
the optimal routing and control strategy are achieved in control mode
µ4.

6 Discussion

The above modeling framework addresses the problem of navigating a
set of moving agents in a transportation network, with constraints on
the agents’ initial locations, required destinations, and required times
of arrival at destination, as well as on the agents’ minimal pairwise dis-
tances. We now discuss several directions in which the above model can
be varied and generalized.

6.1 A model that includes inertia

Inertia can be included by treating both the yαµ ’s and the sαµ’s as state
variables, and the accelerations aαµ as the control variables. The corre-
sponding new state equations would assume the form

ẏαµ = sαµ
ṡαµ = aαµ

}

, α ∈ A

The rescaling of physical time to normalized time τ ∈ [0, 1] formulated in
section 4.2 would be carried out analogously. The resulting problem falls
in the class of the kinodynamic motion planning problems; some related
theoretical results can be found in [5] and in references therein.

6.2 Different choices of the cost function

Of the vast number of possible choices of cost function, we briefly discuss
two.

• In situations where inertia cannot be neglected and acceleration
must be the control variable (or among the control variables), it
may be desirable to keep the movement as smooth as possible,
e.g., for passenger comfort or cargo safety. A cost function that
would serve this goal is the integral of the sum of the squared
accelerations:

∑

α∈A

∫ tDEST ;α

0

(

aαµ

)2
dt
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• In situations where it is undesirable to impose times tDEST ;α of ar-
rival at destination as rigid constraints, and preferable to minimize
the absolute differences between the actual arrival times tAAT ;α.
This goal would be served by taking the sum

∑

α∈A

(

tDEST ;α − tAAT ;α
)2

as the cost.

6.3 Asymmetric and anisotropic pairwise separation re-
quirements

In some applications, the pairwise separation requirements for the mov-
ing agents can be asymmetric or anisotropic, or both. Such is the case
when the moving agents in question are aircraft traveling along their
nominal routes. An example of asymmetry is as follows. If two aircraft
are consecutively in-trail and at the same altitude, and the leader’s and
follower’s respective weight classes [22] are Heavy and Small, the required
separation is considerably larger than if the two engine types were in the
opposite order. An example of anisotropy is the requirement of vertical
separation between two aircraft, where aircraft are required to maintain
either 1000 ft vertical separation or the prescribed lateral separation pre-
viously discussed; the resultant shape of an aircraft’s safety envelope is a
cylinder. A mathematical form for such an anisotropic constraint would
use, not the Euclidean norm, but one of the following form: putting
ak = (axk, a

y
k, a

z
k), the norm in the left-hand side of (6) would be replaced

by a “mixed” norm, Euclidean in the xy-plane, and the max-norm along
the height z. If r were the minimal horizontal separation, imposed when
the two aircrafts’ altitudes differ by less than a quantity h, the mixed
norm and the corresponding separation constraint would be

||c1a1 − c2a2||mixed

:= max

{

1
r

√

(c1ax1 − c2a
x
2)

2 + (c1a
y
1 − c2a

y
2)

2
, 1
h
|c1a

z
1 − c2a

z
2|

}

≥ 1

The computations in section 3 would have to be modified accordingly
and would no longer have the closed quadratic form.
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